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Abstract

The measure of heart rate variability (HRV) has become a valuable metric for diagnosing
cardiac health. The ECG is the representative signal containing information about the condi-
tion of this health metric. Analysis of this highly complex and irregular signal cannot always
be addressed through linear statistics. Nonlinear methods are able to describe the processes
generated by biological systems in a more e↵ective way. The adoption of these methods in a
clinical environment, however, has been di�cult and slow. This paper examines the feasibility
of using nonlinear analysis methods in such a setting. Given two data sets of a normal patient
and a patient with atrial fibrillation (from PhysioNet), we examined the e↵ectiveness of using
Poincaré plots, largest Lyapunov exponent, and detrended fluctuation analysis, in di↵erentiat-
ing the subjects. All the methods used were able to clearly separate the two data sets. From a
clinical perspective, calculating accurate Lyapunov exponents requires an average of 5.5 hours
of data, while Poincaré plots and DFA require approximately 100 and 80 minutes, respectively.
Both Poincaré plots and DFA would serve well in characterizing a patient relatively quickly,
while Lyapunov exponents would be too time intensive. To test our hypothesis, we designed
and implemented a simple ECG system that gathered 90 minutes of data from an unclassified
subject. A Poincaré and DFA analysis of the data suggested a healthy normal individual.

1 Introduction

It has been observed that the cyclic variations of heart rate plays an important role in the health
of an individual. Heart rate variability (HRV), the variation over time of the period between heart
beats, is thought to reflect the heart’s ability to adapt to changing circumstances. Its variation may
contain indicators of current diseases, or warnings about impending cardiac diseases. Physiological
signals, however, often vary in a complex and irregular manner making it di�cult to analyze them.
Since the underlying mechanisms involved in the control of heart rate is mainly nonlinear [4], the
application of nonlinear analysis techniques seem appropriate.

One of the controversial topics related to nonlinear science is the dynamical characterization of
HRV. While the question as to whether the human heart is chaotic by nature is interesting, it is a
question that is unlikely to be resolved very soon. Given the complexity of the human heart, where
di↵erent subsystems with feedback loops constantly adapt the cardiac system to its physiological
needs and requirements, it may very well be that the human heart is chaotic in one instance and
stochastic in another. The debate as to its dynamic nature is interesting to the extent that it leads
to new insights about health and disease in patients.

Setting aside the di�culties in documenting chaotic dynamics in HRV, the goal of this paper is
to examine the feasibility of nonlinear analysis in a clinical setting. Towards that end, it examines
several methods such as Poincaré plot analysis, Lyapunov exponents, and detrended fluctuation
analysis (DFA) in distinguishing between groups of patients. Most studies of nonlinear techniques on
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Figure 1: An ECG Example

HRV are based on long-term time series and hence focused on 24-hour ambulatory ECG recordings.
We examine using these methods on consecutively smaller data lengths to determine their reliability
in HRV classification.

Measuring the electrical impulses of the heart through an ECG is the standard way to study
HRV. This paper examines 3 ECG data sets: a healthy subject, a subject with atrial fibrillation,
and an unclassified subject. The first two data sets were obtained from PhysioNet, while the third
was obtained experimentally through a custom ECG system. The length of time to obtain data
from the third subject was informed by the results from the first two data sets. The third subject
was then classified based on the analysis of the obtained ECG data.

In the next section, we describe the ECG data used and the RR interval method used in the
analysis. Section 3 discusses in detail the nonlinear techniques used in characterizing the signals. The
results of the analysis are provided in section 4. Section 5 presents the design and implementation
of the custom ECG system followed by an analysis of the data obtained. We finally conclude in
section 6.

2 ECG Data and Methods

An ECG measures the electrical impulses of heart activity, and is composed of four components:
the p-wave, the QRS complex, and the t-wave (Figure 1). Typically, conditions of the heart are
detected by irregular behavior in either the amplitude, duration, or frequency of the smaller waves
or QRS complex. While they are valid methods for analysis, they require high resolution data and
are a↵ected by noise. Another alternative, which this paper explores, is to focus on the R-peak of
the QRS complex, more specifically, the duration between the R spikes. This measure, dubbed the
RR interval, is useful in detecting heart beat irregularities. It is robust to noise as it only requires
keeping track of the time between major, easily detectable spikes. Given the RR intervals, the heart
rate (beats per minute) is given as:

HR = 60/Ri (1)

This paper analyses three data sets, two of which were obtained from the PhysioNet database of
physiologic signals [2]. Each of the two time series from PhysioNet is 24 hours long. The first time
series (n1rr) is of a healthy, adult male who is 32 years old. The second time series (a1rr) is of an
atrial fibrillation (AF) patient. The sex, and age of the AF patient were not provided. The third
data set was obtained experimentally, using a simple, custom ECG system, from a 30 year old adult
male with no prior HRV classification (e.g.. normal, AF, cardiac arrhythmia, etc). Informed by our
analysis of the two PhysioNet data sets, we gathered 90 minutes of ECG data and then used the
data to classify the subject.
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3 Nonlinear Methods of Analysis

Nonlinear techniques have been used in a variety of studies to describe complex biological systems
in an e↵ective way [1, 3]. The methods employed by this paper to study HRV include, interspike
interval embedding, the largest Lyapunov exponent (LLE), Poincaré plot geometry, and detrended
fluctuation analysis (DFA). Each is discussed in detail in the subsections below.

3.1 Poincaré Plots

A Poincaré plot analysis portrays the nature of RR interval fluctuations. It is a plot in which each
RR interval is plotted as a function of the previous RR interval (RRn against RRn+1). It is used as
a quantitative visual technique where the shape of the plot is used to indicate the degree of heart
failure of the subject [10]. The plot provides summary information, as well as detailed beat-to-
beat information on the behavior of the heart. It can be analyzed quantitatively by calculating the
standard deviations of the distances of the R � R(i) to the lines y = x and y = �x + (R � Rm),
where R � Rm is the mean of all the beat-to-beat intervals. The standard deviation of the short-
term RR interval is referred to as SD1 (minor axis of the cloud), while the standard deviation of
the long-term RR interval is called SD2 (major axis of the cloud). Typically, the ratio SD1/SD2 is
used to characterize various cardiac abnormalities. A lower ratio is an indicator of a healthy heart
and typically creates a comet or cigar-like plot.

3.2 Interspike Interval Embedding

Often, the first step in nonlinear dynamical analysis is the reconstruction of the phase space. It is used
in calculating various measures such as the Lyapunov exponent (Section 3.3). The simplest method
for reconstruction is the time-delay method described by Takens [8], where the multidimensional
dynamics of the system can be generated from one measurement variable. In order for Takens
theorem to hold, the sampling time interval needs to be uniform, which is not the case with RR
intervals. If however, we assume that the spikes result from an integrate and fire process, then
the RRi(s) are just an integral of some state variable. This idea, proved by Sauer [7], allows the
embedding of RR intervals using usual time delay embedding. The reconstructed and original system
attractors are topologically equivalent. For a time series R � R(n), where n = 1, 2, ...N , the time
delay vectors in phase space can be reconstructed as defined by

Xn = [RR(n), RR(n+ ⌧), RR(n+ 2⌧), ..., RR(n+ (m� 1)⌧)] (2)

where ⌧ is referred to as the delay time and m is the embedding dimension. This paper employed the
false nearest neighbors technique in estimating the embedding dimension, and the average mutual
information technique in estimating the delay.

3.3 Largest Lyapunov Exponent (LLE)

The largest Lyapunov exponent is a quantitative measure of the sensitivity of the system to initial
conditions and gives a measure of predictability. It defines the average rate of divergence of two
neighboring trajectories. Even though an m-dimensional system has m Lyapunov exponents, it is
often su�cient to compute just the largest Lyapunov exponent. A negative exponent implies that
the orbits approach a common fixed point while a zero exponent represents orbits that maintain
their relative positions (on a stable attractor). A positive exponent is indicative of orbits that are
on a chaotic attractor. Di↵erent methods exist for calculating the largest Lyapunov exponent. The
method employed by this paper was proposed by Rosenstein et al [6]. It is known to be robust with
data length. This method looks for the nearest neighbor of each point in phase space and tracks
their separation over a period of time. By plotting the log of the divergence versus time, the LLE
is estimated by computing a least-squares fit to the linear region of the resulting curve. The LLE
for normal subjects should be lower than patients diagnosed with AF since the variation in RR is
much lower (compared to AF).
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3.4 Detrended Fluctuation Analysis (DFA)

A time series is generally considered stationary if its mean, standard deviation and higher moments
are invariant under time translation. Signals that fail these conditions are considered nonstationary.
For such signals, a bounded time series can be integrated and mapped to a self-similar process. A
sequence of coin flips, for example, can be mapped using this method to a one-dimensional random
walk (a stationary integrated time series). However, using this type of fractal analysis for highly
nonstationary signals like heart rate, only makes the nonstationary of the original data even more
apparent during the integration procedure.

Detrended fluctuation analysis is used to overcome this complication. This technique, introduced
by Peng et al [5], is a modified version of the root-mean-square analysis of a random walk that can
be used to quantify the fractal scaling properties of short interval RR interval signals. The general
idea behind DFA is to calculate the average amount of fluctuation over bins of di↵erent sizes (root
mean square deviation between the signal and its trend in each bin) and plot the result as a function
of bin size on a log-log scale.

First, the RR time series of length K is integrated using the equation,

y(k) =
kX

i=1

[RR(i)�RRavg] (3)

where y(k) is the kth value in the integrated series. RR(i) is the ith interbeat interval and RRavg

is the average interbeat interval over the entire beat series. The integrated series is then divided
in n windows of equal length. In each window, a least squares line representing the trend in that
window is fitted to the RR interval data. The y coordinate of the straight line segments are denoted
by yn(k). Finally, the integrated time series is detrended in each window. The root-mean-square
fluctuation of the integrated and detrended series is calculated using equation 4.

F (n) =

vuut1/N
NX

k=1

[y(k)� yn(k)]
2 (4)

This computation is repeated over di↵erent window sizes to obtain the relationship between F (n)
and the window size n. This relationship can be thought of as the number of beats in a window
that is the size of the window of observation. Usually, F (n) will increase with window size. A linear
relationship on a log-log graph indicates the presence of self-similarity. The fluctuations in small
boxes are related to the fluctuations in large boxes in a power-law fashion. The slope of the line,
relating logF (n) to log n determines the scaling exponent, ↵. Fractal like signals result in a scaling
exponent value of 1 (↵ = 1). A totally random signal results in a value of 0.5. For a more intuitive
understanding, ↵ can be thought of as the “coarseness” of the original time series. The larger the
value of ↵, the smoother the series.

For healthy, normal subjects, the scaling exponent should be closer to 1, indicating fractal-like
behavior. For highly varying signals, like patients with atrial fibrillation, the exponent should be
very low [9].

4 Results

Using the nonlinear methods discussed above, the two data sets for normal and AF subjects were
analyzed. The results focus on the feasibility of using nonlinear approaches in analyzing cardiovascu-
lar variability in a clinical setting. If, for example, 24 hours of ECG data is required for a particular
nonlinear analysis method, it would be too time intensive to succeed in a clinical environment.

Figure 2 shows the Poincaré plots for both subjects. For the normal subject, the classic cigar
shape is clearly visible in the plot. The ratio SD1/SD2 for the normal subject is 0.85. In the case
of the AF subject, the plot shows a “fan-like” dispersion. The ratio SD1/SD2 for the AF subject is
3.02, indicative of an unhealthy heart. This ratio is more in the case of the AF subject due to more
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Figure 2: Poincaré plots for normal subject (left) and AF subject (right). The SD1/SD2 ratios are
0.85 and 3.02 respectively.

Figure 3: Phase-space plots for normal subject (left, m = 7, ⌧ = 2) and AF subject (right, m = 8,
⌧ = 2).

variation in the RR interval. The Poincaré plots, di↵erentiates the two data sets significantly. To
get a clear picture of the plots, approximately 10000 (⇠ 1.5hrs) beats were required.

To generate the phase-space plots, Tisean was used to compute the embedding dimension (m)
and the delay (⌧). The embedding dimension was calculated using false nearest neighbors and the
delay was estimated using average mutual information. Figure 3 details the phase-space plots for
the two data sets. For the normal subject, the phase-space plot looks like a cluster of points. In the
case of atrial fibrillation, heart rate signal records highly erratic variability; this is depicted in the
scattering of points in the phase-space plot.

Given a reconstruction of the phase space, the LLEs for the normal and AF subjects were
calculated (using Tisean lyap r). In order to determine the minimum amount of data required for
a successful estimation, LLEs were calculated for di↵erent time lengths. Table 1 details the results.
The LLEs computed from 20 hours of ECG data are the most accurate. Given this baseline, LLEs
were then computed for progressively smaller data lengths. For the normal subject, an accurate LLE
estimate can be obtained with 5 hours of ECG data; the AF subject required 6 hours. Results show
a positive LLE for both data sets, suggesting a chaotic time series. While the LLE characterizes the
two subjects well, with the AF subject having a higher LLE than the normal subject (due to higher
RR variations), it is too time intensive for a clinical setting.

The last nonlinear method employed to distinguish the two data sets was DFA. Figure 4 shows
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Figure 4: DFA analysis

the results of the analysis. For the normal subject, the fractal scaling (↵) exponent is 0.8. In previous
studies, healthy subjects revealed a scaling exponent of approximately 1 [9], indicating fractal-like
behavior. For highly varying signals, like patients with AF, the scaling exponent is very low. The
results support this conclusion with the AF subject having a reduced scaling exponent of 0.13. This
method required approximately 8000 beats (⇠ 80min), the least amount of data out of the nonlinear
methods used.

Table 1: LLEs for various time lengths

Normal AF

LLE (10 min) 0.03 0.09
LLE (1 hr) 0.23 0.43
LLE (3 hrs) 0.49 0.35
LLE (5 hrs) 0.53 0.45
LLE (6 hrs) 0.56 0.66
LLE (8 hrs) 0.57 0.64
LLE (20 hrs) 0.55 0.67

5 Experiment and Analysis

Of the nonlinear analysis methods used, Poincaré plot geometry, and DFA required the least amount
of data for distinguishing the two subjects. While 1.5 hours of ECG data is still considerable, it is
not as prohibitive as a 24 hour requirement. To test these two methods, a simple ECG system was
developed and used to gather data from an unclassified subject. The experimental ECG system is
by no means perfect, but since the analysis methods described above only require RR intervals, the
system only needs to detect the spikes in the signal train and not the finer characteristics (p-wave
and t-wave). The simple ECG designed for this experiment is di↵erent from many others in that
it greatly simplifies the circuitry by eliminating noise reduction components, accomplishing this via
software-based data post-processing.

The electrical signals generated by the heart can be detected on the surface of the skin. In
theory one should be able to grab two leads of a standard voltmeter and see the voltage change with
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Figure 5: Simple ECG circuit

Figure 6: ECG signal of unclassified subject

each heart beat. However, since the fluctuations are rapid and the signal is extremely weak (a few
millionths of a volt) by the time it reaches the skin, it is di�cult to detect without amplification.
A simple way to amplify the electrical di↵erence between two points is via an operational amplifier.
The gain on an op-amp is controlled by varying the resistors attached to it. Unfortunately, the
amplifier also amplifies radiation from a variety of other electrical sources (computers, cell phones,
lights, wiring) which is absorbed by the skin and is measured with the ECG. The traditional method
for dealing with noise is complicated analog circuity. However, since the ECG signal is much slower in
comparison to the characteristic, repeating, high-frequency noise, it can be separated using digital
signal processing software on the computer. In order to digitize the signal, the analog to digital
converter found in the common audio input of a computer sound card can be used.

The circuit diagram of the ECG system is detailed in Figure 5. The 0.1uF capacitor was used
to stabilize the signal and reduce high frequency noise. With the circuit output connected to the
audio input of the sound card, a sound editor was used to record the ECG data in live mode. Once
the data was recorded, it was post processed by applying a lowpass filter at 30Hz. This eliminated
most of the electrical noise (> 30Hz), while leaving the ECG intact (< 15Hz). Since, the low pass
filter dramatically decreased the potential of the waveform, the volume of the signal was increased.
Finally an auto-gain filter was employed to normalize the heart beat potentials.

The ECG signal of the unclassified subject can be seen in Figure 6. It is clear from the trace that
even after processing there is still a lot of noise present. While the p-wave and the t-wave are lost
in the noise, the R spike is clearly visible and the RR intervals can be calculated. A Poincaré plot
of the RR intervals (Figure 7) of the subject seems to suggest a normal, healthy individual. The
shape of the plot follows a “cigar-like” pattern and a quantitative analysis of the standard deviations
reveals a low SD1/SD2 ratio of 0.77. This classification is confirmed by the DFA analysis, shown in
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Figure 7: Poincaré plot of unclassified subject

Figure 8: DFA analysis of unclassified subject

Figure 8, where the scaling exponent (↵ = 0.92) is a value close to 1, indicating a healthy subject.

6 Conclusion

Methods from nonlinear dynamics provide valuable information regarding the dynamics and stucture
of beat-to-beat time series. In this paper, we explored the feasibility of using nonlinear analysis
methods in a clinical setting. More specifically, Poincaré plots, LLE, and DFA methods were used
in analyzing HRV of two data sets (normal and AF) from PhysioNet. While our analysis allowed us
to clearly di↵erentiate the subjects, the data length required varied depending on the method used.
Of the three methods used, calculating Lyapunov exponents required the most amount of data, with
an average of 5.5 hours of data, while Poincaré plots and DFA required an average of 90 minutes of
data. In a clinical setting, both Poincaré plots and DFA would serve well in characterizing a patient,
while Lyapunov exponents would be too time intensive. To test our hypothesis, we designed and
implemented a simple ECG circuit and gathered 90 minutes of data from an unclassified subject. A
Poincaré and DFA analysis of the data suggests a healthy normal individual.
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